
Open Source RAD with OpenObject
PREAMBLE OpenERP is a modern Enterprise Management Software, released
under the AGPL license, and featuring CRM, HR, Sales, Accounting,
Manufacturing, Inventory, Project Management, ... It is based on
OpenObject, a modular, scalable, and intuitive Rapid Application
Development (RAD) framework written in Python.

OpenObject features a complete and modular toolbox for quickly
building applications: integrated Object-Relationship Mapping (ORM)
support, template-based Model-View-Controller (MVC) interfaces, a report
generation system, automated internationalization, and much more.

Python is a high-level dynamic programming language, ideal for RAD,
combining power with clear syntax, and a core kept small by design.

Tip: Useful links
• Main website, with OpenERP downloads: www.openerp.com

• Functional & technical documentation: doc.openerp.com

• Community resources: www.launchpad.net/open-object

• Integration server: test,openobject.com

• Learning Python: doc.python.org

• OpenERP E-Learning platform: edu.openerp.com

Installing OpenERP
OpenERP is distributed as packages/installers for most platforms, but can
of course be installed from the source on any platform.

OpenERP Architecture

OpenERP uses the well-known client-server paradigm, with different
pieces of software acting as client and server depending on the desired
configuration.Client software
OpenERP provides a thick desktop client (GTK+) on all platforms, and a
web interface is also accessible using any modern browser.

Tip: Installation procedure
The procedure for installing OpenERP is likely to evolve (dependencies and so
on), so make sure to always check the specific documentation (packaged & on
website) for the latest procedures. See http://doc.openerp.com/install

Package installation
Windows all-in-one installer, and separate installers for server, client, and

webserver are on the website

Linux openerp-server and openerp-client packages are available via
corresponding package manager (e.g. Synaptic on Ubuntu)

Mac look online for package installers for the GTK client, as well as
tutorials for installing the server (e.g. devteam.taktik.be)

Installing from source
There are two alternatives: using a tarball provided on the website, or
directly getting the source using Bazaar (distributed Source Version

Control). You also need to install the required dependencies (PostgreSQL
and a few Python libraries – see documentation on doc.openerp.com).

Compilation tip: OpenERP being Python-based, no compilation step is needed

Typical bazaar checkout procedure (on Debian-based Linux)
$ sudo apt-get install bzr # install bazaar version control
$ bzr branch lp:openerp # retrieve source installer
$ cd openerp && python ./bzr_set.py # fetch code and perform setup

Database creation
After installation, run the server and the client. From the GTK client, use
File→Databases→New Database to create a new database (default super
admin password is admin). Each database has its own modules and
config, and demo data can be included.

Building an OpenERP module: idea
CONTEXT The code samples used in this memento are taken from a
hypothetical idea module. The purpose of this module would be to help
creative minds, who often come up with ideas that cannot be pursued
immediately, and are too easily forgotten if not logged somewhere. It
could be used to record these ideas, sort them and rate them.

Note: Modular development
OpenObject uses modules as feature containers, to foster maintainable and
robust development. Modules provide feature isolation, an appropriate level of
abstraction, and obvious MVC patterns.

Composition of a module
A module may contain any of the following elements:
• business objects: declared as Python classes extending the osv.osv
OpenObject class, the persistence of these resources is completely
managed by OpenObject ;
• data: XML/CSV files with meta-data (views and workflows
declaration), configuration data (modules parametrization) and demo
data (optional but recommended for testing, e.g. sample ideas) ;
• wizards: stateful interactive forms used to assist users, often
available as contextual actions on resources ;
• reports: RML (XML format), MAKO or OpenOffice report templates, to
be merged with any kind of business data, and generate HTML, ODT or
PDF reports.

Typical module structure
Each module is contained in its own directory within the server/bin/addons
directory in the server installation.

Note: You can declare your own add-ons directory in the configuration file of
OpenERP (passed to the server with the -c option) using the addons_path option.

addons/
 |- idea/ # The module directory
 |- demo/ # Demo and unit test population data
 |- i18n/ # Translation files
 |- report/ # Report definitions
 |- security/ # Declaration of groups and access rights
 |- view/ # Views (forms,lists), menus and actions
 |- wizard/ # Wizards definitions
 |- workflow/ # Workflow definitions
 |- __init__.py # Python package initialization (required)
 |- __terp__.py # module declaration (required)
 |- idea.py # Python classes, the module's objects

The __init__.py file is the Python module descriptor, because an OpenERP
module is also a regular Python module.
__init__.py:

Import all files & directories containing python code
import idea, wizard, report

The __terp__.py (or __openerp__.py as of v5.2) is the OpenERP descriptor and
contains a single Python dictionary with the actual declaration of the
module: its name, dependencies, description, and composition.
__terp__.py:

{
 'name' : 'Idea',

 'version' : '1.0',
 'author' : 'OpenERP',
 'description' : 'Ideas management module',
 'category': 'Enterprise Innovation',
 'website': 'http://www.openerp.com',
 'depends' : ['base'], # list of dependencies, conditioning startup order
 'update_xml' : [# data files to load at module init
 'security/groups.xml', # always load groups first!
 'security/ir.model.access.csv', # load access rights after groups
 'workflow/workflow.xml',
 'view/views.xml',
 'wizard/wizard.xml',
 'report/report.xml',
],
 'demo_xml': ['demo/demo.xml'], # demo data (for unit tests)
 'active': False, # whether to install automatically at new DB creation
}

Object Service – ORM
Key component of OpenObject, the Object Service (OSV) implements a
complete Object-Relational mapping layer, freeing developers from having
to write basic SQL plumbing.
Business objects are declared as Python classes inheriting from the osv.osv
class, which makes them part of the OpenObject Model, and magically
persisted by the ORM layer.

Predefined attributes are used in the Python class to specify a business
object's characteristics for the ORM:
idea.py:

from osv import osv, fields
class ideaidea(osv.osv):
 _name = 'idea.idea'
 _columns = {
 'name': fields.char('Title', size=64, required=True, translate=True),
 'state': fields.selection([('draft','Draft'),
 ('confirmed','Confirmed')],'State',required=True,readonly=True),
 # Description is read-only when not draft!
 'description': fields.text('Description', readonly=True,
 states={'draft': [('readonly', False)]}),
 'active': fields.boolean('Active'),
 'invent_date': fields.date('Invent date'),
 # by convention, many2one fields end with '_id'
 'inventor_id': fields.many2one('res.partner','Inventor'),
 'inventor_country_id': fields.related('inventor_id','country',
 readonly=True, type='many2one',
 relation='res.country', string='Country'),
 # by convention, *2many fields end with '_ids'
 'vote_ids': fields.one2many('idea.vote','idea_id','Votes'),
 'sponsor_ids': fields.many2many('res.partner','idea_sponsor_rel',
 'idea_id','sponsor_id','Sponsors'),
 'score': fields.float('Score',digits=(2,1)),
 'category_id' = many2one('idea.category', 'Category'),
 }
 _defaults = {
 'active': lambda *a: 1, # ideas are active by default
 'state': lambda *a: 'draft', # ideas are in draft state by default
 }
 def _check_name(self,cr,uid,ids):
 for idea in self.browse(cr, uid, ids):
 if 'spam' in idea.name: return False # Can't create ideas with spam!
 return True
 _sql_constraints = [('name_uniq','unique(name)', 'Idea must be unique!')]
 _constraints = [(_check_name,'Please avoid spam in ideas !', ['name'])]
idea() # Instantiate the class

Predefined osv.osv attributes for business objects

_name (required) business object name, in dot-notation (in module namespace)

_columns (required) dictionary {field names → object fields declarations }

_defaults dictionary: { field names → functions providing defaults }
 _defaults['name'] = lambda self,cr,uid,context: 'eggs'

_auto if True (default) the ORM will create the database table – set
to False to create your own table/view within the init() method

_inherit _name of the parent business object (for prototype inheritance)

_inherits for multiple / instance inheritance mechanism: dictionary
mapping the _name of the parent business objects to the names
of the corresponding foreign key fields to use

_constraints list of tuples defining the Python constraints, in the form
(func_name, message, fields). (→70)

Copyright © 2010 Open Object Press - All rights reserved – See license on page 7. p.1/7

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15

16
17

18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

file:///home/olivier/Documents/Memento/http://test,openobject.com
file:///home/olivier/Documents/Memento/http://test,openobject.com
file:///home/olivier/Documents/Memento/http://test,openobject.com
http://www.openerp.com/
http://www.openerp.com/
http://doc.openerp.com/
http://devteam.taktik.be/
http://doc.openerp.com/install
http://doc.python.org/
http://www.launchpad.net/open-object
http://doc.openerp.com/

Predefined osv.osv attributes for business objects
_sql_constraints list of tuples defining the SQL constraints, in the form

(name, sql_def, message). (→69)

_log_access If True (default), 4 fields (create_uid, create_date, write_uid,
write_date) will be used to log record-level operations, made
accessible via osv's perm_read() function

_order Name of the field used to sort the records in lists (default: 'id')

_rec_name Alternative field to use as name, used by osv's name_get()
(default: _name)

_sql SQL code to create the table/view for this object (if _auto is
False) – can be replaced by SQL execution in the init() method

_table SQL table name to use (default: _name with dots '.' replaced by
underscores '_')

Inheritance mechanisms

ORM field types
Objects may contain 3 types of fields: simple, relational, and functional.
Simple types are integers, floats, booleans, strings, etc. Relational fields
represent the relationships between objects (one2many, many2one,
many2many). Functional fields are not stored in the database but
calculated on-the-fly as Python functions. Relevant examples in the idea

class above are indicated with the corresponding line numbers (→XX,XX)

ORM fields types
Common attributes supported by all fields (optional unless specified)

• string: field label (required)
• required: True if mandatory
• readonly: True if not editable
• help: help tooltip
• select: 1 to include in search
views and optimize for list
filtering (with database index)

• context: dictionary with contextual
parameters (for relational fields)
• change_default: True if field should be usable
as condition for default values in clients
• states: dynamic changes to this field's
common attributes based on the state field
(→42,46)

Simple fields

ORM fields types
boolean(...) integer(...) date(...)
datetime(...) time(...)

 'active': fields.boolean('Active'),
 'priority': fields.integer('Priority'),
 'start_date': fields.date('Start Date'),

char(string,size,translate=False,..)
text(string, translate=False, …)
Text-based fields

• translate: True if field values can be
translated by users
• size: maximum size for char fields (→41,45)

float(string, digits=None, ...)
Floating-point value with
arbitrary precision and scale

• digits: tuple (precision, scale) (→58) . If digits
is not provided, it's a float, not a decimal type.

selection(values, string, ...)
Field allowing selection among
a set of predefined values

• values: list of values (key-label tuples) or
function returning such a list (required) (→42)

binary(string, filters=None, ...)
 Field for storing a file or binary
content.

• filters: optional filename filters
'picture': fields.binary('Picture',
 filters='*.png,*.gif')

reference(string, selection, size,..)
 Field with dynamic relationship
to any other object, associated
with an assistant widget

• selection: model _name of allowed objects
types and corresponding label (same format as
values for selection fields) (required)
• size: size of text column used to store it (as
text: 'model_name,object_id') (required)

'contact': fields.reference('Contact',[
 ('res.partner','Partner'),
 ('res.partner.contact','Contact')], 128)

Relational fields

Common attributes supported by
relational fields

• domain: optional restriction in the form of
arguments for search (see search())

many2one(obj, ondelete='set null', …)
(→50)
Relationship towards a parent
object (using a foreign key)

• obj: _name of destination object (required)
• ondelete: deletion handling, e.g. 'set null',
'cascade', see PostgreSQL documentation

one2many(obj, field_id, …) (→55)
Virtual relationship towards
multiple objects (inverse of
many2one)

• obj: _name of destination object (required)
• field_id: field name of inverse many2one, i.e.
corresponding foreign key (required)

many2many(obj, rel, field1, field2, …)
(→56)
Bidirectional multiple
relationship between objects

• obj: _name of destination object (required)
• rel: relationship table to use (required)
• field1: name of field in rel table storing the id
of the current object (required)
• field2: name of field in rel table storing the id
of the target object (required)

Functional fields

function(fnct, arg=None, fnct_inv=None, fnct_inv_arg=None, type='float',
fnct_search=None, obj=None, method=False, store=False, multi=False,…)
Functional field simulating a real field, computed rather than stored

• fnct: function to compute the field value (required)
 def fnct(self, cr, uid, ids, field_name, arg, context)
 returns a dictionary { ids→values } with values of type type

• fnct_inv: function used to write a value in the field instead
 def fnct_inv(obj, cr, uid, id, name, value, fnct_inv_arg, context)

• type: type of simulated field (any other type besides 'function')
• fnct_search: function used to search on this field
 def fnct_search(obj, cr, uid, obj, name, args)
 returns a list of tuples arguments for search(), e.g. [('id','in',[1,3,5])]

• obj: model _name of simulated field if it is a relational field
• store, multi: optimization mechanisms (see usage in Performance Section)

related(f1, f2, …, type='float', …) Shortcut field equivalent to browsing chained fields
• f1,f2,...: chained fields to reach target (f1 required) (→51)

• type: type of target field

ORM fields types
property(obj, type='float', view_load=None, group_name=None, …)
Dynamic attribute with specific access rights
• obj: object (required)
• type: type of equivalent field

Tip: relational fields symmetry

• one2many ↔ many2one are symmetric

• many2many ↔ many2many are symmetric when inversed (swap field1 and field2)

• one2many ↔ many2one + many2one ↔ one2many = many2many

Special / Reserved field names
A few field names are reserved for pre-defined behavior in OpenObject. Some
of them are created automatically by the system, and in that case any field
with that name will be ignored.

id unique system identifier for the object (created by ORM, do not add it)

name defines the value used by default to display the record in lists, etc.
if missing, set _rec_name to specify another field to use for this purpose

active defines visibility: records with active set to False are hidden by default

sequence defines order and allows drag&drop reordering if included in list views

state defines life-cycle stages for the object, used for workflows

parent_id defines tree structure on records, and enables child_of operator

parent_left,
parent_right

used in conjunction with _parent_store flag on object, allows faster
access to tree structures (see also Performance Optimization section)

create_date,
create_uid,
write_date,
write_uid

used to log creator, last updater, date of creation and last update date of
the record. disabled if _log_access flag is set to False
(created by ORM, do not add them)

Working with the ORM
Inheriting from the osv.osv class makes all the ORM methods available on
business objects. These methods may be invoked on the self object within
the Python class itself (see examples in the table below), or from outside
the class by first obtaining an instance via the ORM pool system.
ORM usage sample

class idea2idea2(osv.osv):
 _name = 'idea.idea'
 _inherit = 'idea.idea'
 def _score_calc(self,cr,uid,ids,field,arg,context=None):
 res = {}
 # This loop generates only 2 queries thanks to browse()!
 for idea in self.browse(cr,uid,ids,context=context):
 sum_vote = sum([v.vote for v in idea.vote_ids])
 avg_vote = sum_vote/len(idea.vote_ids)
 res[idea.id] = avg_vote
 return res
 _columns = {
 # Replace static score with average of votes
 'score':fields.function(_score_calc,type='float',method=True)
 }
idea2()

ORM Methods on osv.osv objects
OSV generic accessor • self.pool.get('object_name') may be used to

obtain a model class from anywhere

Common parameters, used by
multiple methods

• cr: database connection (cursor)
• uid: id of user performing the operation
• ids: list of record ids, or single integer when
there is only one id
• context: optional dictionary of contextual
parameters, such as user language
 e.g. { 'lang': 'en_US', ... }

Copyright © 2010 Open Object Press - All rights reserved – See license on page 7. p.2/7

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

ORM Methods on osv.osv objects
create(cr, uid, values,
context=None)

Creates a new record with the
specified value
Returns: id of the new record

• values: dictionary of field values for the
record

idea_id = self.create(cr, uid,
 { 'name': 'Spam recipe',
 'description' : 'spam & eggs',
 'inventor_id': 45,
 })

search(cr, uid, args, offset=0,
limit=None, order=None,
context=None, count=False)

Returns: list of ids of records
matching the given criteria

• args: list of tuples specifying search criteria
• offset: optional number of records to skip
• limit: optional max number of records to
return
• order: optional columns to sort by (default:
self._order)
• count: if True, returns only the number of
records matching the criteria, not their ids

#Operators: =, !=, >, >=, <, <=, like, ilike,
#in, not in, child_of, parent_left, parent_right
#Prefix operators: '&' (default), '|', '!'
#Fetch non-spam partner shops + partner 34
ids = self.search(cr, uid,
 ['|', ('partner_id', '!=', 34),
 '!', ('name', 'ilike', 'spam'),],
 order='partner_id')

read(cr, user, ids, fields=None,
context=None)

Returns: list of dictionaries with
requested field values

• fields: optional list of field names to return
(default: all fields)

results = self.read(cr, uid, [42,43],
 ['name', 'inventor_id'])
print 'Inventor:', results[0]['inventor_id']

write(cr, uid, ids, values, context=None)

Updates records with given ids
with the given values.
Returns: True

• values: dictionary of field values to update
self.write(cr, uid, [42,43],
 { 'name': 'spam & eggs',
 'partner_id': 24,
 })

copy(cr, uid, id, defaults,context=None)

Duplicates record with given id
updating it with defaults values.
Returns: True

• defaults: dictionary of field values to change
before saving the duplicated object

unlink(cr, uid, ids, context=None)

Deletes records with the given ids
Returns: True

self.unlink(cr, uid, [42,43])

browse(cr, uid, ids, context=None)

Fetches records as objects,
allowing to use dot-notation to
browse fields and relations
Returns: object or list of objects
requested

idea = self.browse(cr, uid, 42)
print 'Idea description:', idea.description
print 'Inventor country code:',
 idea.inventor_id.address[0].country_id.code
for vote in idea.vote_ids:
 print 'Vote %2.2f' % vote.vote

default_get(cr, uid, fields,
context=None)

Returns: a dictionary of the
default values for fields (set on
the object class, by the user
preferences, or via the context)

• fields: list of field names

defs = self.default_get(cr,uid,
 ['name','active'])
active should be True by default
assert defs['active']

perm_read(cr, uid, ids, details=True)

Returns: a list of ownership
dictionaries for each requested
record

• details: if True, *_uid fields are replaced
with the name of the user
• returned dictionaries contain: object id (id),
creator user id (create_uid), creation date
(create_date), updater user id (write_uid),
update date (write_date)

perms = self.perm_read(cr,uid,[42,43])
print 'creator:', perms[0].get('create_uid', 'n/a')

ORM Methods on osv.osv objects
fields_get(cr, uid, fields=None,

context=None)

Returns a dictionary of field
dictionaries, each one describing
a field of the business object

• fields: list of field names
class ideaidea(osv.osv):
 (...)
 _columns = {
 'name' : fields.char('Name',size=64)
 (...)
 def test_fields_get(self,cr,uid):
 assert(self.fields_get('name')['size'] == 64)

fields_view_get(cr, uid,
view_id=None, view_type='form',
context=None, toolbar=False)

Returns a dictionary describing
the composition of the requested
view (including inherited views
and extensions)

• view_id: id of the view or None

• view_type: type of view to return if view_id
is None ('form','tree', ...)
• toolbar: True to include contextual actions

def test_fields_view_get(self,cr,uid):
 idea_obj = self.pool.get('idea.idea')
 form_view = idea_obj.fields_view_get(cr,uid)

name_get(cr, uid, ids, context={})
Returns tuples with the text
representation of requested
objects for to-many relationships

Ideas should be shown with invention date
def name_get(self,cr,uid,ids):
 res = []
 for r in self.read(cr,uid,ids['name','create_date'])
 res.append((r['id'], '%s (%s)' (r['name'],year))
 return res

name_search(cr, uid, name='',
args=None, operator='ilike',
context=None, limit=80)

Returns list of object names
matching the criteria, used to
provide completion for to-many
relationships. Equivalent of
search() on name + name_get()

• name: object name to search for
• operator: operator for name criterion
• args, limit: same as for search())

Countries can be searched by code or name
def name_search(self,cr,uid,name='',
 args=[],operator='ilike',context={},
 limit=80):
 ids = []
 if name and len(name) == 2:
 ids = self.search(cr, user,
 [('code', '=', name)] + args,
 limit=limit, context=context)
 if not ids:
 ids = self.search(cr, user,
 [('name', operator, name)] + args,
 limit=limit, context=context)
 return self.name_get(cr,uid,ids)

export_data(cr, uid, ids, fields,
context=None)

Exports fields for selected objects,
returning a dictionary with a
datas matrix. Used when
exporting data via client menu.

• fields: list of field names
• context may contain import_comp (default:
False) to make exported data compatible with
import_data() (may prevent exporting some
fields)

import_data(cr, uid, fields, data,
mode='init', current_module='',
noupdate=False, context=None,
filename=None)

Imports given data in the given
module Used when exporting data
via client menu

• fields: list of field names
• data: data to import (see export_data())
• mode: 'init' or 'update' for record creation
• current_module: module name
• noupdate: flag for record creation
• filename: optional file to store partial import
state for recovery

Tip: use read() through webservice calls, but always browse() internally

Building the module interface
To construct a module, the main mechanism is to insert data records
declaring the module interface components. Each module element is a
regular data record: menus, views, actions, roles, access rights, etc.

Common XML structure
XML files declared in a module's update_xml attribute contain record
declarations in the following form:

<?xml version="1.0" encoding="utf-8"?>
<openerp>
 <data>
 <record model="object_model_name" id="object_xml_id">
 <field name="field1">value1</field>
 <field name="field2">value2</field>
 </record>

 <record model="object_model_name2" id="object_xml_id2">
 <field name="field1" ref="module.object_xml_id"/>
 <field name="field2" eval="ref('module.object_xml_id')"/>
 </record>
 </data>
</openerp>

Each type of record (view, menu, action) support a specific set of child
entities and attributes, but all share the following special attributes:
id the unique (per module) XML identifier of this record (xml_id)

ref used instead of element content to reference another record (works
cross-module by prepending the module name)

eval used instead of element content to provide value as a Python expression,
that can use the ref() method to find the database id for a given xml_id

Tip: XML RelaxNG validation
OpenObject validates the syntax and structure of XML files, according to a
RelaxNG grammar, found in server/bin/import_xml.rng.
For manual check use xmllint: xmllint –relaxng /path/to/import_xml.rng <file>

Common CSV syntax
CSV files can also be added in update_xml, and the records will be inserted
by the OSV's import_data() method, using the CSV filename to determine
the target object model. The ORM automatically reconnects relationships
based on the following special column names:
id (xml_id) column containing identifiers for relationships

many2one_field reconnect many2one using name_search()

many2one_field:id reconnect many2one based on object's xml_id

many2one_field.id reconnect many2one based on object's database id

many2many_field reconnects via name_search(), repeat for multiple values

many2many_field:id reconnects with object's xml_id, repeat for multiple values

many2many_field.id reconnects with object's database id, repeat for multiple values

one2many_field/field creates one2many destination record and sets field value
ir.model.access.csv

"id","name","model_id:id","group_id:id","perm_read","perm_write","perm_create","perm_unlink"
"access_idea_idea","idea.idea","model_idea_idea","base.group_user",1,0,0,0
"access_idea_vote","idea.vote","model_idea_vote","base.group_user",1,0,0,0

Menus and actions
Actions are declared as regular records and can be triggered in 3 ways:
• by clicking on menu items linked to a specific action
• by clicking on buttons in views, if these are connected to actions
• as contextual actions on an object

Action declaration
<record model="ir.actions.act_window" id="action_id">
 <field name="name">action.name</field>
 <field name="view_id" ref="view_id"/>
 <field name="domain">[list of 3-tuples (max 250 characters)]</field>
 <field name="context">{context dictionary (max 250 characters)}</field>
 <field name="res_model">object.model.name</field>
 <field name="view_type">form|tree</field>
 <field name="view_mode">form,tree,calendar,graph</field>
 <field name="target">new</field>
 <field name="search_view_id" ref="search_view_id"/>
</record>

id identifier of the action in table ir.actions.act_window, must be unique
name action name (required)
view_id specific view to open (if missing, highest priority view of given type is used)
domain tuple (see search() arguments) for filtering the content of the view
context context dictionary to pass to the view
res_model object model on which the view to open is defined
view_type set to form to open records in edit mode, set to tree for a tree view only
view_mode if view_type is form, list allowed modes for viewing records (form, tree, ...)
target set to new to open the view in a new window
search_view_id identifier of the search view to replace default search form (new in version 5.2)

Menu declaration
The menuitem entity is a shortcut for declaring an ir.ui.menu record and
connect it with a corresponding action via an ir.model.data record.

<menuitem id="menu_id" parent="parent_menu_id" name="label" icon="icon-code"
 action="action_id" groups="groupname1,groupname2" sequence="10"/>

id identifier of the menuitem, must be unique

Copyright © 2010 Open Object Press - All rights reserved – See license on page 7. p.3/7

88
89
90
91
92
93
94
95

96
97
98
99

100
101

102
103
104

105
106
107
108
109
110
111
112
113
114
115

116
117

parent id of the parent menu in the hierarchy
name Optional menu label (default: action name)
action identifier of action to execute, if any
icon icon to use for this menu (e.g. terp-graph, STOCK_OPEN, see doc.opernerp.com)
groups list of groups that can see this menu item (if missing, all groups can see it)
sequence integer index for ordering sibling menuitems (10,20,30..)

Views and inheritance
Views form a hierarchy. Several views of the same type can be declared
on the same object, and will be used depending on their priorities. By
declaring an inherited view it is possible to add/remove features in a view.

Generic view declaration
<record model="ir.ui.view" id="view_id">
 <field name="name">view.name</field>
 <field name="model">object_name</field>
 <field name="type">form</field> # tree,form,calendar,search,graph,gantt
 <field name="priority" eval="16"/>
 <field name="arch" type="xml">
 <!-- view content: <form>, <tree>, <graph>, … -->
 </field>
</record>

id unique view identifier
name view name
model object model on which the view is defined (same as res_model in actions)
type view type: form, tree, graph, calendar, search, gantt (search is new in 5.2)
priority view priority, smaller is higher (default: 16)
arch architecture of the view, see various view types below

Forms (to view/edit records)
Forms allow creation/edition or resources, and correspond to <form> elements.

Allowed elements all (see form elements below)
<form string="Idea form">
 <group col="6" colspan="4">
 <group colspan="5" col="6">
 <field name="name" select="1" colspan="6"/>
 <field name="inventor_id" select="1"/>
 <field name="inventor_country_id" />
 <field name="score" select="2"/>
 </group>
 <group colspan="1" col="2">
 <field name="active"/><field name="invent_date"/>
 </group>
 </group>
 <notebook colspan="4">
 <page string="General">
 <separator string="Description"/>
 <field colspan="4" name="description" nolabel="1"/>
 </page>
 <page string="Votes">
 <field colspan="4" name="vote_ids" nolabel="1" select="1">
 <tree>
 <field name="partner_id"/>
 <field name="vote"/>
 </tree>
 </field>
 </page>
 <page string="Sponsors">
 <field colspan="4" name="sponsor_ids" nolabel="1" select="1"/>
 </page>
 </notebook>
 <field name="state"/>
 <button name="do_confirm" string="Confirm" icon="gtk-ok" type="object"/>
</form>

Form Elements

Common attributes for all elements:
• string: label of the element
• nolabel: 1 to hide the field label
• colspan: number of column on which the field must span
• rowspan: number of rows on which the field must span
• col: number of column this element must allocate to its child elements
• invisible: 1 to hide this element completely
• eval: evaluate this Python code as element content (content is string by default)
• attrs: Python map defining dynamic conditions on these attributes: readonly,
invisible, required based on search tuples on other field values

field automatic widgets depending on the corresponding field type. Attributes:
• string: label of the field, also for search (overrides field name)
• select: 1 to show the field in normal search, 2 for advanced only
• nolabel: 1 to hide the field label
• required: override required field attribute
• readonly: override readonly field attribute
• password: True to hide characters typed in this field
• context: Python code declaring a context dictionary
• domain: Python code declaring list of tuples for restricting values
• on_change: Python method call to trigger when value is changed
• groups: comma-separated list of group (id) allowed to see this field
• widget: select alternative widget (url, email, image, float_time,
reference, text_wiki, text_html, progressbar)

properties dynamic widget showing all available properties (no attribute)
button clickable widget associated with actions. Specific attributes:

• type: type of button: workflow (default), object, or action
• name: workflow signal, function name (without parentheses) or
action to call (depending on type)
• confirm: text of confirmation message when clicked
• states: comma-separated list of states in which this button is shown
• icon: optional icon (all GTK STOCK icons e.g. gtk-ok)

separator horizontal separator line for structuring views, with optional label
newline place-holder for completing the current line of the view
label free-text caption or legend in the form
group used to organise fields in groups with optional label (adds frame)
notebook,
page

notebook elements are tab containers for page elements. Attributes:
• name: label for the tab/page
• position: tabs position in notebook (inside, top, bottom, left, right)

Dynamic views
In addition to what can be done with states and attrs attributes, functions
may be called by view elements (via buttons of type object, or on_change
attributes on fields) to obtain dynamic behavior. These functions may alter
the view interface by returning a Python map with the following entries:
value a dictionary of field names and their updated values

domain a dictionary of field names and their updated domains of value

warning a dictionary with a title and message to show a warning dialog

Lists/Trees
Lists include field elements, are created with type tree, and have a <tree>
parent element.
Attributes • colors: list of colors mapped to Python conditions

• editable: top or bottom to allow in-place edit
• toolbar: set to True to display the top level of object
hierarchies as a side toolbar (example: the menu)

Allowed elements field, group, separator, tree, button, filter, newline
<tree string="Idea Categories" toolbar="1" colors="blue:state==draft">
 <field name="name"/>
 <field name="state"/>
</tree>

Calendars
Views used to display date fields as calendar events (<calendar> parent)
Attributes • color: name of field for color segmentation

• date_start: name of field containing event start date/time
• day_length: length of a calendar day in hours (default: 8)
• date_stop: name of field containing event stop date/time
 or
• date_delay: name of field containing event duration

Allowed elements field (to define the label for each calendar event)
<calendar string="Ideas" date_start="invent_date" color="inventor_id">
 <field name="name"/>
</calendar>

Gantt Charts
Bar chart typically used to show project schedule (<gantt> parent element)
Attributes same as <calendar>

Allowed elements field, level
• level elements are used to define the Gantt chart levels, with
the enclosed field used as label for that drill-down level

<gantt string="Ideas" date_start="invent_date" color="inventor_id">
 <level object="idea.idea" link="id" domain="[]">
 <field name="inventor_id"/>
 </level>
</gantt>

Charts (Graphs)
Views used to display statistical charts (<graph> parent element)
Tip: charts are most useful with custom views extracting ready-to-use statistics

Attributes • type: type of chart: bar, pie (default)
• orientation: horizontal, vertical

Allowed elements field, with specific behavior:
• first field in view is X axis, 2nd one is Y, 3rd one is Z
• 2 fields required, 3rd one is optional
• group attribute defines the GROUP BY field (set to 1)
• operator attribute sets the aggregation operator to use for
other fields when one field is grouped (+,*,**,min,max)

<graph string="Total idea score by Inventor" type="bar">
 <field name="inventor_id" />
 <field name="score" operator="+"/>
</graph>

Search views (new in v5.2)
Search views are used to customize the search panel on top of list views,
and are declared with the search type, and a top-level <search> element.
After defining a search view with a unique id, add it to the action opening
the list view using the search_view_id field in its declaration.
Allowed elements field, group, separator, label, search, filter, newline,

properties
• filter elements allow defining button for domain filters
• adding a context attribute to fields makes widgets that alter the
search context (useful for context-sensitive fields, e.g. pricelist-
dependent prices)

<search string="Search Ideas">
 <group col="6" colspan="4">
 <filter string="My Ideas" icon="terp-partner"
 domain="[('inventor_id','=',uid)]"
 help="My own ideas"/>
 <field name="name" select="1"/>
 <field name="description" select="1"/>
 <field name="inventor_id" select="1"/>
 <!-- following context field is for illustration only -->
 <field name="inventor_country_id" select="1" widget="selection"
 context="{'inventor_country': self}"/>
 </group>
</search>

Copyright © 2010 Open Object Press - All rights reserved – See license on page 7. p.4/7

118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161
162

163
164
165

166
167
168
169
170

171
172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187

http://doc.opernerp.com/

View Inheritance
Existing views should be modifying through inherited views, never
directly. An inherited view references its parent view using the inherit_id
field, and may add or modify existing elements in the view by referencing
them through XPath expressions, specifying the appropriate position.
Tip: XPath reference can be found at www.w3.org/TR/xpath
position • inside: placed inside match (default)

• replace: replace match
• before: placed before match
• after: placed after match

<!-- improved idea categories list -->
<record id="idea_category_list2" model="ir.ui.view">
 <field name="name">id.category.list2</field>
 <field name="model">ir.ui.view</field>
 <field name="inherit_id" ref="id_category_list"/>
 <field name="arch" type="xml">
 <xpath expr="/tree/field[@name='description']" position="after">
 <field name="idea_ids" string="Number of ideas"/>
 </xpath>
 </field>
</record>

Reports
There are several report engines in OpenERP, to produce reports from
different sources and in many formats.

Special expressions used inside report templates produce dynamic data
and/or modify the report structure at rendering time.
Custom report parsers may be written to support additional expressions.

Alternative Report Formats (see doc.openerp.com)

sxw2rml OpenOffice 1.0 templates (.sxw) converted to RML with
sxw2rml tool, and the RML rendered in HTML or PDF

rml RML templates rendered directly as HTML or PDF
xml,xsl:rml XML data + XSL:RML stylesheets to generate RML
odt2odt OpenOffice templates (.odt) used to produce directly

OpenOffice documents (.odt) (As of OpenERP 5.2)
mako Mako template library used to produce HTML output, by

embedding Python code and OpenERP expressions within
any text file (As of OpenERP 5.2)

Expressions used in OpenERP report templates
[[<content>]] double brackets content is evaluated as a Python

expression based on the following expressions

Predefined expressions:

• objects contains the list of records to print
• data comes from the wizard launching the report
• user contains the current user (as per browse())
• time gives access to Python time module
• repeatIn(list,'var','tag') repeats the current parent element named tag for
each object in list, making the object available as var during each loop
• setTag('tag1','tag2') replaces the parent RML tag1 with tag2

• removeParentNode('tag') removes parent RML element tag

• formatLang(value, digits=2, date=False, date_time=False, grouping=True,
monetary=False) can be used to format a date, time or amount according
to the locale
• setLang('lang_code') sets the current language and locale for translations

Report declaration
<!-- The following creates records in ir.actions.report.xml model -->
<report id="idea_report" string="Print Ideas" model="idea.idea"
 name="idea.report" rml="idea/report/idea.rml" >
<!-- Use addons/base_report_designer/wizard/tiny_sxw2rml/tiny_sxw2rml.py

 to generate the RML template file from a .sxw template -->

id unique report identifier
name name for the report (required)
string report title (required)
model object model on which the report is defined (required)
rml, sxw, xml, xsl path to report template sources (starting from addons), depending on report
auto set to False to use a custom parser, by subclassing report_sxw.rml_parse and

declaring the report as follows:
report_sxw.report_sxw(report_name, object_model,rml_path,parser=customClass)

header set to False to suppress report header (default: True)
groups comma-separated list of groups allowed to view this report
menu set to True to link the report with the Print icon (default: True)
keywords specify report type keyword (default: client_print_multi)

Tip: RML User Guide: www.reportlab.com/docs/rml2pdf-userguide.pdf
Example RML report extract:

<story>
 <blockTable style="Table">
 <tr>
 <td><para style="Title">Idea name</para> </td>
 <td><para style="Title">Score</para> </td>
 </tr>
 <tr>
 <td><para>[[repeatIn(objects,'o','tr')]] [[o.name]]</para></td>
 <td><para>[[o.score]]</para></td>
 </tr>
 </blockTable>
</story>

Workflows
Workflows may be associated with any
object in OpenERP, and are entirely
customizable.
Workflows are used to structure and manage
the lifecycles of business objects and
documents, and define transitions, triggers,
etc. with graphical tools.
Workflows, activities (nodes or actions) and
transitions (conditions) are declared as XML
records, as usual. The tokens that navigate
in workflows are called workitems.

Workflow declaration
Workflows are declared on objects that possess a state field (see the
example idea class in the ORM section)

<record id="wkf_idea" model="workflow">
 <field name="name">idea.basic</field>
 <field name="osv">idea.idea</field>
 <field name="on_create" eval="1"/>
</record>

id unique workflow record identifier
name name for the workflow (required)
osv object model on which the workflow is defined (required)
on_create if True, a workitem is instantiated automatically for each new osv record

Workflow Activities (nodes)
<record id="act_confirmed" model="workflow.activity">
 <field name="name">confirmed</field>
 <field name="wkf_id" ref="wkf_idea"/>
 <field name="kind">function</field>
 <field name="action">action_confirmed()</field>
</record>

id unique activity identifier
wkf_id parent workflow identifier
name activity node label
flow_start True to make it a 'begin' node, receiving a workitem for each workflow instance
flow_stop True to make it an 'end' node, terminating the workflow when all items reach it
join_mode logical behavior of this node regarding incoming transitions:

• XOR: activate on the first incoming transition (default)

• AND: waits for all incoming transitions to become valid

split_mode logical behavior of this node regarding outgoing transitions:

• XOR: one valid transition necessary, send workitem on it (default)

• OR: send workitems on all valid transitions (0 or more), sequentially

• AND: send a workitem on all valid transitions at once (fork)
kind type of action to perform when node is activated by a transition:

• dummy to perform no operation when activated (default)

• function to invoke a function determined by action

• subflow to execute the subflow with subflow_id, invoking action to determine
the record id of the record for which the subflow should be instantiated. If action
returns no result, the workitem is deleted.

• stopall to terminate the workflow upon activation
subflow_id if kind subflow, id of the subflow to execute (use ref attribute or search with a tuple)
action object method call, used if kind is function or subflow. This function should also

update the state field of the object, e.g. for a function kind:
def action_confirmed(self, cr, uid, ids):
 self.write(cr, uid, ids, { 'state' : 'confirmed' })
 # … perform other tasks
 return True

Workflow Transitions (edges)
Conditions are evaluated in this order: role_id, signal, condition expression

<record id="trans_idea_draft_confirmed" model="workflow.transition">
 <field name="act_from" ref="act_draft"/>
 <field name="act_to" ref="act_confirmed"/>
 <field name="signal">button_confirm</field>
 <field name="role_id" ref="idea_manager"/>
 <field name="condition">1 == 1</field>
</record>

act_from, act_to identifiers of the source and destination activities
signal name of a button of type workflow that triggers this transition
role_id reference to the role that user must have to trigger the transition (see Roles)
condition Python expression that must evaluate to True for transition to be triggered

Tip: The Web client features a graphical workflow editor, via
the Customise→Manage Workflows link in lists and forms.

Security
Access control mechanisms must be combined to achieve a coherent
security policy.

Group-based access control mechanisms
Groups are created as normal records on the res.groups model, and granted
menu access via menu definitions. However even without a menu, objects
may still be accessible indirectly, so actual object-level permissions
(create,read,write,unlink) must be defined for groups. They are usually
inserted via CSV files inside modules. It is also possible to restrict access
to specific fields on a view or object using the field's groups attribute.

ir.model.access.csv
"id","name","model_id:id","group_id:id","perm_read","perm_write","perm_create","perm_unlink"
"access_idea_idea","idea.idea","model_idea_idea","base.group_user",1,1,1,0
"access_idea_vote","idea.vote","model_idea_vote","base.group_user",1,1,1,0

Roles
Roles are created as normal records on the res.roles model and used only
to condition workflow transitions through transitions' role_id attribute.

Wizards
Wizards describe stateful interactive sessions with the user through
dynamic forms. As of OpenERP v5.0, wizards make use of the
osv_memory in-memory persistence to allow constructing wizards from
regular business objects and views.

Wizard objects (osv_memory)
In-memory objects are created by extending osv.osv_memory:

from osv import fields,osv
import datetime
class cleanup_wizardcleanup_wizard(osv.osv_memory):
 _name = 'idea.cleanup.wizard'
 _columns = {
 'idea_age': fields.integer('Age (in days)'),
 }
 def cleanup(self,cr,uid,ids,context={}):

Copyright © 2010 Open Object Press - All rights reserved – See license on page 7. p.5/7

188
189
190
191
192
193
194
195
196
197
198

199
200
201
202

203

204
205
206
207
208
209
210
211
212
213
214
215

216
217
218
219
220

221
222
223
224
225
226

227
228
229
230
231
232
233

234
235
236

237
238
239
240
241
242
243
244

http://www.reportlab.com/docs/rml2pdf-userguide.pdf
http://doc.openerp.com/
http://www.w3.org/TR/xpath

 idea_obj = self.pool.get('idea.idea')
 for wiz in self.browse(cr,uid,ids):
 if wiz.idea_age <= 3:
 raise osv.except_osv('UserError','Please select a larger age')
 limit = datetime.date.today()-datetime.timedelta(days=wiz.idea_age)
 ids_to_del = idea_obj.search(cr,uid, [('create_date', '<' ,
 limit.strftime('%Y-%m-%d 00:00:00'))],context=context)
 idea_obj.unlink(cr,uid,ids_to_del)
 return {}
cleanup_wizard()

Views
Wizards use regular views and their buttons may use a special cancel
attribute to close the wizard window when clicked.

<record id="wizard_idea_cleanup" model="ir.ui.view">
 <field name="name">idea.cleanup.wizard.form</field>
 <field name="model">idea.cleanup.wizard</field>
 <field name="type">form</field>
 <field name="arch" type="xml">
 <form string="Idea Cleanup Wizard">
 <label colspan="4" string="Select the age of ideas to cleanup"/>
 <field name="idea_age" string="Age (days)"/>
 <group colspan="4">
 <button string="Cancel" special="cancel" icon="gtk-cancel"/>
 <button string="Cleanup" name="cleanup" type="object" icon="gtk-ok"/>
 </group>
 </form>
 </field>
</record>

Wizard execution
Such wizards are launched via regular action records, with a special target
field used to open the wizard view in a new window.

<record id="action_idea_cleanup_wizard" model="ir.actions.act_window">
 <field name="name">Cleanup</field>
 <field name="type">ir.actions.act_window</field>
 <field name="res_model">idea.cleanup.wizard</field>
 <field name="view_type">form</field>
 <field name="view_mode">form</field>
 <field name="target">new</field>
</record>

WebServices – XML-RPC
OpenERP is accessible through XML-RPC interfaces, for which libraries
exist in many languages.
Python example

import xmlrpclib
... define HOST, PORT, DB, USER, PASS
url = 'http://%s:%d/xmlrpc/common' % (HOST,PORT)
sock = xmlrpclib.ServerProxy(url)
uid = sock.login(DB,USER,PASS)
print "Logged in as %s (uid:%d)" % (USER,uid)

Create a new idea
url = 'http://%s:%d/xmlrpc/object' % (HOST,PORT)
sock = xmlrpclib.ServerProxy(url)
args = {
 'name' : 'Another idea',
 'description' : 'This is another idea of mine',
 'inventor_id': uid,
}
idea_id = sock.execute(DB,uid,PASS,'idea.idea','create',args)

PHP example
<?
include('xmlrpc.inc'); // Use phpxmlrpc library, available on sourceforge
// ... define $HOST, $PORT, $DB, $USER, $PASS
$client = new xmlrpc_client("http://$HOST:$PORT/xmlrpc/common");
$msg = new xmlrpcmsg("login");
$msg->addParam(new xmlrpcval($DB, "string"));
$msg->addParam(new xmlrpcval($USER, "string"));
$msg->addParam(new xmlrpcval($PASS, "string"));
resp = $client->send($msg);
uid = $resp->value()->scalarval()
echo "Logged in as $USER (uid:$uid)"

// Create a new idea
$arrayVal = array(
 'name'=>new xmlrpcval("Another Idea", "string") ,
 'description'=>new xmlrpcval("This is another idea of mine" , "string"),
 'inventor_id'=>new xmlrpcval($uid, "int"),
);
$msg = new xmlrpcmsg('execute');
$msg->addParam(new xmlrpcval($DB, "string"));
$msg->addParam(new xmlrpcval($uid, "int"));
$msg->addParam(new xmlrpcval($PASS, "string"));
$msg->addParam(new xmlrpcval("idea.idea", "string"));

$msg->addParam(new xmlrpcval("create", "string"));
$msg->addParam(new xmlrpcval($arrayVal, "struct"));
$resp = $client->send($msg);
?>

Internationalization
Each module can provide its own translations within the i18n directory, by
having files named LANG.po where LANG is the locale code for the
language, or the language and country combination when they differ (e.g.
pt.po or pt_BR.po). Translations will be loaded automatically by OpenERP for
all enabled languages.
Developers always use English when creating a module, then export the
module terms using OpenERP's gettext POT export feature
(Administration>Translations>Export a Translation File without specifying a
language), to create the module template POT file, and then derive the
translated PO files.
Many IDE's have plugins or modes for editing and merging PO/POT files.

Tip: The GNU gettext format (Portable Object) used by OpenERP is integrated
into LaunchPad, making it an online collaborative translation platform.

|- idea/ # The module directory
 |- i18n/ # Translation files
 | - idea.potidea.pot # Translation Template (exported from OpenERP)
 | - fr.po # French translation
 | - pt_BR.po # Brazilian Portuguese translation
 | (...)

Tip: By default OpenERP's POT export only extracts labels inside XML files or
inside field definitions in Python code, but any Python string can be translated
this way by surrounding it with the tools.translate._ method (e.g. _('Label'))

Rapid Application Development
Module recorder
The base_module_record module can be used to export a set of changes in
the form of a new module. It should be used for all customizations that
should be carried on through migrations and updates. It has 2 modes:
• Start/Pause/Stop mode, where all operations (on business objects or
user interface) are recorded until the recorder is stopped or paused.
• Date- and model-based mode where all changes performed after a
given date on the given models (object types) are exported. .

Report Creator (view) and Report Designer (print) modules
The base_report_creator module can be used to automate the creation of
custom statistics views, e.g. to construct dashboards. The resulting
dashboards can then be exported using the base_module_record module.

Performance Optimization
As Enterprise Management Software typically has to deal with large
amounts of records, you may want to pay attention to the following anti-
patterns, to obtain consistent performance:
• Do not place browse() calls inside loops, put them before and access
only the browsed objects inside the loop. The ORM will optimize the
number of database queries based on the browsed attributes.
• Avoid recursion on object hierarchies (objects with a parent_id
relationship), by adding parent_left and parent_right integer fields on your
object, and setting _parent_store to True in your object class. The ORM will
use a modified preorder tree traversal to be able to perform recursive
operations (e.g. child_of) with database queries in O(1) instead of O(n)
• Do not use function fields lightly, especially if you include them in
tree views. To optimize function fields, two mechanisms are available:

◦ multi: all fields sharing the same multi attribute value will be
computed with one single call to the function, which should then
return a dictionary of values in its values map
◦ store: function fields with a store attribute will be stored in the
database, and recomputed on demand when the relevant trigger
objects are modified. The format for the trigger specification is as
follows: store = {'model': (_ref_fnct, fields, priority)} (see example below)

def _get_idea_from_vote(self,cr,uid,ids,context={}):
 res = {}
 vote_ids = self.pool.get('idea.vote').browse(cr,uid,ids,context=context)
 for v in vote_ids:
 res[v.idea_id.id] = True # Store the idea identifiers in a set
 return res.keys()
def _compute(self,cr,uid,ids,field_name,arg,context={}):
 res = {}
 for idea in self.browse(cr,uid,ids,context=context):
 vote_num = len(idea.vote_ids)
 vote_sum = sum([v.vote for v in idea.vote_ids])
 res[idea.id] = {
 'vote_sum': vote_sum,
 'vote_avg': (vote_sum/vote_num) if vote_num else 0.0,
 }
 return res
_columns = {
 # These fields are recomputed whenever one of the votes changes
 'vote_avg': fields.function(_compute, method=True, string='Votes Average',
 store = {'idea.vote': (_get_idea_from_vote,['vote'],10)},multi='votes'),
 'vote_sum': fields.function(_compute, method=True, string='Votes Sum',
 store = {'idea.vote': (_get_idea_from_vote,['vote'],10)},multi='votes'),
}

Community / Contributing
OpenERP projects are hosted on LaunchPad(LP), where all project resources
may be found: Bazaar branches, bug tracking, blueprints, roadmap, FAQs, etc.
Create a free account on launchpad.net to be able to contribute.

Launchpad groups
Group* Members Bazaar/LP restrictions

OpenERP Quality
Team (~openerp)

OpenERP Core Team Can merge and commit on
official branches.

OpenERP Commiters
(~openerp-commiter)

Selected active
community members

Can mark branches to be merged
into official branch. Can commit
on extra-addons branch

OpenERP Drivers
(~openerp-drivers)

Selected active
community members

Can confirm bugs and set
milestones on bugs / blueprints

OpenERP Community
(~openerp-community)

Open group, anyone
can join

Can create community branches
where everyone can contribute

*Members of upper groups are also members of lower groups

Copyright © 2010 Open Object Press - All rights reserved – See license on page 7. p.6/7

245
246
247
248
249
250
251
252
253
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277

278
279
280
281
282
283

284285
286
287
288
289
290
291
292
293

294
295
296
297
298
299
300
301
302
303
304

305306
307
308
309
310
311
312
313
314
315
316

317
318
319
320

321
322
323
324
325
326

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

http://launchpad.net/

License
Copyright © 2010 Open Object Press. All rights reserved.

You may take electronic copy of this work and distribute it if you don't change
the content. You can also print a copy to be read by yourself only.

We have contracts with different publishers in different countries to sell and
distribute paper or electronic based versions of this work (translated or not)
in bookstores. This helps to distribute and promote the Open ERP product. It
also helps us to create incentives to pay contributors and authors with the
royalties.

Due to this, grants to translate, modify or sell this work are strictly forbidden,
unless OpenERP s.a. (representing Open Object Press) gives you a written
authorization for this.

While every precaution has been taken in the preparation of this work, the
publisher and the authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

Published by Open Object Press, Grand Rosière, Belgium

Copyright © 2010 Open Object Press - All rights reserved – See license on page 7. p.7/7

	Open Source RAD with OpenObject
	Tip: Useful links

	Installing OpenERP
	Tip: Installation procedure
	Compilation tip: OpenERP being Python-based, no compilation step is needed

	Building an OpenERP module: idea
	Note: Modular development

	Building the module interface
	Tip: XML RelaxNG validation

	Views and inheritance
	Form Elements
	Reports
	Tip: RML User Guide: www.reportlab.com/docs/rml2pdf-userguide.pdf

	Workflows
	Security
	Wizards
	WebServices – XML-RPC
	Internationalization
	Rapid Application Development
	Performance Optimization
	Community / Contributing
	

	License

