
 PUTTY FOR SSH TUNNELING TO POSTGRESQL SERVER

What is PuTTY

PuTTY was developed by Simon Tatham and is a very common light-weight MIT-Licensed free and open
source Secure Shell (SSH) client for connecting to Linux/Unix systems via a Teletype (TTY) terminal
emulation mode console. Currently there are ports for Microsoft Windows, other unix like systems, and
ports in progress for Mac OSX and Symbian mobile phone OS.

PuTTY fits into that class of tools we affectionately call Swiss Army Knives because it is Light, Multi-
Purpose, and Good Enough. As an added benefit it is free and open source with a generous license so it
is commonly embedded in commercial apps.

PuTTY comes in handy both as an SSH terminal console and as a SSH Tunneling tool which allows you
for example to use PgAdmin III from a local windows workstation against a remote PostgreSQL server
even in cases where the linux/unix PostgreSQL pg_hba.conf and postgresql.conf file only allow local
connections or non-SSH traffic is blocked by firewall. For more about the nuances of configuring the
pg_hba.conf PostgreSQL server file that controls user access check out Hubert Lubaczewski's
â€œFATAL: Ident authentication failedâ€, or how cool ideas get bad usage schemas
http://www.depesz.com/index.php/2007/10/04/ident/

In this article we shall cover how to use PuTTY's SSH Tunneling feature to access a remote PostgreSQL
server that doesn't allow remote connections. To make it a little more interesting we shall demonstrate
how to do this for PgAdmin III.

SSH Tunneling and why you might need it

First off we'd like to say the command-line tool psql that also comes with PostgreSQL is nice and has
its charm. It is simple enough that it can be run from an SSH console without tunneling so not much
need for SSH Tunneling here. Unfortunately psql is scary to beginning PostgreSQL users, and also
requires you have a fair number of SQL commands memorized to make the most use of it. PSQL also
requires some typing which is annoying for many general use cases. It is ideal for scripting things and
so forth, but it just is not a GUI app and was not designed to be.

This is where the PgAdmin III tool fits the bill. PgAdmin III comes packaged with PostgreSQL but can
also be installed separately. Now how do you use PgAdmin III when all you have is shell access to your
server box and all the PostgreSQL ports are blocked or pg_hba.conf is configured to not allow remote
access? This is where SSH Tunneling comes in handy.

What SSH Tunneling allows you to do is to tunnel all your traffic to the server thru your SSH
connection. It is basically a Virtual Private Network (VPN) using SSH. The basic idea is you map local
ports on your pc to remote service ports on the server. When you launch your SSH session, you can
then connect with any application e.g. PgAdmin III, MS Access whatever to this remote port via the
local port. Instead of specifying the remote server port when setting up your PgAdmin III or MS Access
connection, you specify the ip as localhost and port as whatever port you configured to receive traffic
via the Tunnel.

PuTTY for SSH Tunneling to PostgreSQL Server - Postgres... http://www.postgresonline.com/article_pfriendly/38.html

1 sur 6 04/06/2013 11:30

Setting up SSH Tunneling with PuTTY

If you do not have PuTTY already, you can download it from http://www.chiark.greenend.org.uk
/~sgtatham/putty/download.html. Windows users can download the respective putty.exe. Putty is fairly
small and can even fit on a floppy. It is really sweet because it requires no installation - just click and
run.

Once downloaded, simply launch the putty.exe.

Once launched, your screen will look something like this.

Now create a connection by following these steps:

Fill in a hostname or ip address of your PostgreSQL Server in the field labeled (Hostname or IP Address)
Fill in The name you'd like to reference this connection in the Saved Sessions field. At this point your screen
should look something like this

PuTTY for SSH Tunneling to PostgreSQL Server - Postgres... http://www.postgresonline.com/article_pfriendly/38.html

2 sur 6 04/06/2013 11:30

Click the Save button, and select the new session - your screen should look like this:

Now set the tunneling configuration

PuTTY for SSH Tunneling to PostgreSQL Server - Postgres... http://www.postgresonline.com/article_pfriendly/38.html

3 sur 6 04/06/2013 11:30

To set the tunneling configuration of this new session or an existing session, simply select session
Click Load
Expand the Connections->SSH->Tunnels: Your screen should now look like this

Next click the Local radio box and type in the Source Port - this is the server's postgresql port which is
generally 5432

In Destination - this is the server address and port you want the traffic redirected to on server.
For personal desktop use, we tend to use L5432 (if you are not running a postgresql dev server
locally) or Lsomeotherunusedport (e.g. L8888) if you already have 5432 in use. So to have
pgserver port 5432 traffic (when pgserver is listening on localhost) and you want traffic
forwarded to your local 8888 port - your Forwarded ports section should look like this

L5433 localhost:5432

Note: You could very well put the LAN ip address of your workstation in here such as
192.168.1.2 if you want local users to share your Tunnel connection.

At this point your screen should look something like this

PuTTY for SSH Tunneling to PostgreSQL Server - Postgres... http://www.postgresonline.com/article_pfriendly/38.html

4 sur 6 04/06/2013 11:30

Now click the Add button. Which should make your screen look like this

Keep in mind that although we are focusing on PostgreSQL, you can forward other Linux/Unix

PuTTY for SSH Tunneling to PostgreSQL Server - Postgres... http://www.postgresonline.com/article_pfriendly/38.html

5 sur 6 04/06/2013 11:30

service traffic such as VNC, FTP etc by adding more entries

Now go back to the Session section again and click the Save button and then click Open to Launch the
Session.

Once you do all of the above you and your Linux/Unix server is enabled with SSH support, you should
get a black login console. Login as usual and just keep the console running.

Connecting with PgAdmin III

Connecting with PgAdmin III is now simple. The only trick is that instead of using the server's name
and port, you specify the destination you chose instead. In the above we had chosen localhost:5432 so
we setup a PgAdmin III connection with that as shown below.

PuTTY for SSH Tunneling to PostgreSQL Server - Postgres... http://www.postgresonline.com/article_pfriendly/38.html

6 sur 6 04/06/2013 11:30

